## Nature of Pt Chain Distortion in K<sub>1.75</sub>Pt(CN)<sub>4</sub>·1.5H<sub>2</sub>O

Fourier summation, FORDAP; least-squares refinement, OR XLFS3; error analysis of distances and angles, OR FFE3, and structural drawings, OR TEPII. For determination of least-squares planes the program PLNJO was used; J.-O. Lundgien, University of Uppsala, Uppsala, Sweden; based on the method of D. Blow, *Acta Crystallogr.*, **13**, 168 (1960). For the intensity statistics MULTAN was used; J. P. Declercq, G. Germain, P. Main, and M. M. Woolfson, Acta Crystallogr., Sect. A, 29, 231 (1973). The Delauney-reduced cell parameters were derived using the computer program TRACER II, A Fortran Lattice Transformation-Cell Reduction Program, written by Dr. S. L. Lawton.

- (17) P. Day and J. Hines, *Operating Systems Rev.*, 7, 28 (1973).
  (18) S. W. Peterson and H. A. Levy, *Acta Crystallogr.*, 10, 70 (1957).
  (19) (a) The Zachariasen approximation<sup>196</sup> was used for the overall isotropic g parameter as defined and scaled by Coppens and Hamilton.<sup>19c</sup> The  $|F_o|$  values were corrected for extinction from the expression  $|F_o|_{corr} =$  $|F_0|(1 + \overline{T}2g\lambda^3|F_c|^2/V^2 \sin 2\theta)^{-1/4}$ , where  $|F_c|$  is on an absolute scale,  $\lambda$  is the wavelength (Å), g is the refined extinction parameter,  $\overline{T}$  is the mean absorption-weighted path length in the crystal in centimeters (calculated simultaneously during the computation of absorption corrections), and V is the unit cell volume ( $Å^3$ ). (b) W. H. Zachariasen, Acta Crystallogr., 23, 558 (1967). (c) P. Coppens and W. C. Hamilton, Acta Crystallogr., Sect. A, 26, 71 (1970). (20) G. E. Bacon, Acta Crystallogr., Sect. A, 8, 357 (1972). (21) M. L. Moreau-Colin, Bull, Soc. Fr. Mineral. Cristallogr., 91, 332 (1968).

- (21) M. L. Moltad-Coni, Buil. Soc. 17. Interfar. Cristinlogr., 71, 952 (1963).
   (22) K. Krogmann, Angew Chem., Int. Ed. Engl., 8, 35 (1969).
   (23) Some very short Pt-Pt separations are: (a) 2.58 (1) Å in [Pt<sub>3</sub>(C<sub>8</sub>-H<sub>12</sub>)<sub>3</sub>(SnCl<sub>3</sub>)<sub>2</sub>], L. J. Guggenberger, Chem. Commun., 512 (1968); (b) 2.581 Å in [Pt<sub>2</sub>(π-C<sub>3</sub>H<sub>5</sub>)<sub>4</sub>], K. K. Cheung, R. J. Cross, K. P. Forrest, R. Wardle, and M. Mercer, Chem. Commun., 875 (1971); (c) 2.675

(1) Å in  $Pt_3[P(C_6H_{11})_3]_4(CO)_3$ , A. Albinati, G. Carturan, and A. Musco, *Inorg. Chim. Acta*, **16**, L3-L4 (1976); (d) 2.647 Å in [Pt\_2S(CO)(PPh\_3)\_3], A. C. Skapski and P. G. H. Troughton, J. Chem. Soc. A, 2772 (1969); and (e) J. M. Williams, *Inorg. Nucl. Chem. Lett.*, **12**, 651 (1976).
 P. L. Johnson, T. R. Koch, J. A. Abys, and J. M. Williams, to be published.
 K. Krogmann, ACS Symp. Ser., **5**, (1974).

- (26) J. Bernasconi, P. Bruesch, D. Kuse, and H. R. Zeller, J. Phys. Chem.
- Solids, 35, 145 (1974).
- R. L. Musselman, T. R. Koch, and J. M. Williams, to be published. (28) T. W. Thomas, C.-H. Hsu, M. M. Labes, P. S. Gomm, A. E. Underhill,
- and D. M. Watkins, J. Chem. Soc., Dalton Trans., 2050 (1972) (29) K. Carneiro, J. Eckert, G. Shirane, and J. M. Williams, Solid State
- Commun., in press.
- (30) A. J. Schultz, G. D. Stucky, and J. M. Williams, to be published. (31) R. Comes, M. Lambert, H. Launois, and H. R. Zeller, *Phys. Rev. B*, 8, 571 (1973); R. Comes, M. Lambert, and H. R. Zeller, Phys. Status Solidi B, 58, 587 (1973).
  (32) L. Pauling, "The Nature of the Chemical Bond", 3d ed, Cornell University
- Press, Ithaca, N.Y., 1960.
- (33) J. R. Ferraro, L. J. Basile, and J. M. Williams, J. Chem. Phys., 64, 732 (1976).
- (34) D. Cahen and J. E. Lester, Chem. Phys. Lett., 18, 108 (1973).
- (35) M. A. Butler, D. L. Rousseau, and D. N. E. Buchanan, Phys. Rev. B, 7, 61 (1973).
- (36) P. L. Johnson, T. R. Koch, and J. M. Williams, to be published.
  (37) C. F. Eagen, S. A. Werner, and R. B. Saillant, *Phys. Rev. B*, 12, 2036
- (1975). Note that the charge density wave distortions in KCP(Br) are small and the rigid sinusoidal displacement of the  $Pt(CN)4^{-2}$  groups (at 7 K) amounts to only 0.026 Å.

Contribution from the Chemistry Division, Argonne National Laboratory, Argonne, Illinois 60439, and the Webster Research Center, Xerox Corporation, Webster, New York 14580

# The Nature of the Pt Chain Distortion in the Partially Oxidized One-Dimensional Complex, $K_{1,75}Pt(CN)_4 \cdot 1.5H_2O^1$

A. H. REIS, Jr., S. W. PETERSON,\* D. M. WASHECHECK,<sup>2</sup> and JOEL S. MILLER<sup>3</sup>

#### Received March 22, 1976

AIC60199Y

The oxidation of potassium tetracyanoplatinate(II) in the absence of halide ions results in the formation of bronze needles of  $K_{1,75}$ Pt(CN)<sub>4</sub>·1.5H<sub>2</sub>O stoichiometry. The structure of this partially oxidized material consists of parallel one-dimensional noncollinear chains involving a commensurate repeat unit of 11.865 Å. Thus the unit cell contents as deduced from single crystal x-ray data is formulated K7[Pt(CN)4]4·6H2O and is stoichiometric. This material crystallizes in the triclinic space group  $P\bar{1}$  with a = 10.323 (14), b = 9.285 (13), c = 11.865 (17) Å,  $\alpha = 77.31$  (3),  $\beta = 114.85$  (5),  $\gamma = 73.84$  (2)°, and Z = 4. The structure was solved by a combination of Patterson, Fourier, and least-squares refinement techniques to an  $R_F = 0.050$  for the 1840 observed reflections for which  $F_0 > 3\sigma F_0$ . There are three inequivalent Pt atoms in the chain and two Pt-Pt bond distances of 2.967 (1) and 2.976 (1) Å. The average twist angles of the cyanide ligands of the tetracyanoplatinate planes are 45.3 (5) and 49.8 (3.7°). An extensive network of K<sup>+</sup> ionic bonding and hydrogen bonded water molecules knit the material together orthogonal to the chain direction. The chain distortion is shown to be due to Coulombic forces acting between the tetracyanoplatinate anions, located in the asymmetric crystal sites at  $z = -\frac{1}{4}$  and  $^{3}/_{4}$ , and the coordinated asymmetric K<sup>+</sup> distribution. The crystallographic analysis leads to the formal oxidation state of +2.25 for Pt in this potassium deficient material and an odd number of electrons per unit cell.

## Introduction

In recent years there has been an enhanced interest in the chemical and physical properties of pseudo-one-dimensional inorganic and organic complexes due to the prediction and observation of a number of unusual anisotropic physical phenomena<sup>4-6</sup> (e.g., high conductivity, metallic state, metal insulator transition, charge density wave, superconductivity) and chemical properties (e.g., novel structures containing infinite chains with short interplanar spacings, homogeneous nonstoichiometric compositions, and mixed valency) directly associated with the reduced dimensionality of various onedimensional systems.<sup>6-8</sup>

For these reasons there has been immense interest in the synthesis and characterization of several partially oxidized one-dimensional materials. The best characterized highly conducting one-dimensional complexes are based on the partial oxidation of tetracyanoplatinate(II) and reduction of 7,7,-8,8-tetracyano-p-quinodimethane.<sup>6</sup> Partial oxidation of tetracyanoplatinate(II) in the presence of chloride or bromide results in the formation of  $K_2Pt(CN)_4X_{0.3}$ ·3H<sub>2</sub>O (X = Cl, Br) which are well characterized at several temperatures by xray,9-10 neutron,11-14 and diffuse scattering15 methods and have an incommensurate superlattice which is attributed to a charge density wave instability.<sup>16</sup>

Oxidation of tetracyanoplatinate(II) in the absence of halide ions was shown by Levy in  $1910^{17}$  to yield a complex of nominal  $K_{1.75}Pt(CN)_{4}\cdot 1.5H_2O^{17,18}$  stoichiometry. This bronze material was initially characterized by short interplanar spacings from x-ray powder analysis<sup>18</sup> and conductivity<sup>19</sup> which increased with decreasing temperature<sup>19a</sup> thereby suggesting a metallic state. With the isolation of single crystals suitable for x-ray<sup>20</sup> and neutron<sup>21</sup> analysis the structural determination of this partially oxidized cation deficient complex of  $K_{1.75}$ Pt(CN)<sub>4</sub>·1.5H<sub>2</sub>O, KDEF, has been completed. We are presenting here the results of the complete structural investigation which has been undertaken to characterize the nature of this cation deficient partially oxidized material and determine the driving force behind the Pt chain distortion.

### **Experimental Section**

Crystal Preparation. KDEF was prepared by the partial oxidation of K<sub>2</sub>Pt(CN)<sub>4</sub>·3H<sub>2</sub>O in acid solution with hydrogen peroxide according



Figure 1. Oscillation photograph of KDEF rotated about the c axis showing weak  $l \neq 4n$  layers and very strong l = 4n layers with no indication of a superlattice.

to the methods of Levy,<sup>17</sup> Krogmann et al.,<sup>18</sup> and Minot et al.<sup>22</sup> X-ray size crystals grew within 24 h out of the original reaction mixture. Two types of crystals appeared, both metallic needles, a copper form and a bronze form. The copper form was shown to be KCP(Cl), formed due to Cl<sup>-</sup> impurities within the original K<sub>2</sub>Pt(CN)<sub>4</sub>·3H<sub>2</sub>O starting material. Double aqueous recrystallization of K<sub>2</sub>Pt-(CN)<sub>4</sub>·xH<sub>2</sub>O is adequate to remove chloride impurities. The bronze appearing needles proved to be the desired form of KDEF.

Many of the bronze needle crystals were twinned, the twin axis being the needle axis. A suitable untwinned specimen was selected and mounted in a sealed capillary for preliminary checking and data collection.

**Space Group.** Preliminary x-ray precession and Weissenberg photographs showed  $\overline{1}$  Laue symmetry and no systematic absences consistent with the triclinic space groups P1 ( $C_1$ , No. 1) or  $P\overline{1}$  ( $C_1^l$ , No. 2). The crystal needle axis was chosen to be the mounting axis and the crystallographic c axis. Oscillation and rotation photographs showed reciprocal lattice layers for which l = 4n were especially strong; all others were very weak (see Figure 1). This result is in contrast to x-ray data for materials such as KCP(Br) and KCP(Cl) where the c axis length is about half that of the present case and every l = 2n layer is strong. The strength of the l = 4n and the weakness of  $l \neq 4n$  layers clearly indicate the existence of a Pt chain with Pt atoms stacked  $\sim c/4$  apart.

X-Ray Data. Table I lists all pertinent experimental information concerned with the data collection and reduction of KDEF. The crystal, sealed in a glass capillary, was mounted on a G.E. XRD-490 automated diffractometer which has been previously discussed in detail.<sup>23</sup> The cell parameters were determined from precise angular measurements of 16 manually centered reflections, chosen in the 20 range of  $20-35^\circ$ . Two standard reflections were checked repeatedly during the data collection and found to remain unchanged in intensity within the expected statistical variation. Standard errors were assigned to the data on the basis of counting statistics plus a  $(0.03I)^2$  contribution to the variance of each reflection.

Structure Solution and Refinement. The structure was solved using a Patterson map which gave large peaks at c/4 multiples indicating the positions of the Pt atoms. Space group P1 was chosen provisionally and Pt(1) and Pt(3) were assigned to the special positions at (0,0,0)and (0,0,1/2), while Pt(2) was placed at (0.002,0.002,0.252) initially. Isotropic full-matrix least-squares refinement of the scale factor and Pt atoms gave an initial  $R_F$  of 0.24. A difference Fourier revealed the positions of the C, N, and K<sup>+</sup> atoms, which were refined isotropically to an  $R_F$  of 0.16. The potassium ions and Pt atoms were then refined by anisotropic full-matrix refinement to an  $R_F$  of 0.12. A subsequent difference Fourier revealed the positions of all oxygen atoms and a further four cycles of anisotropic full-matrix least-squares refinement converged at an  $R_F$  of 0.094. The positions of all hydrogen atoms were found on a final difference Fourier. Anisotropic full-matrix least-squares refinement of all atoms (hydrogens were refined positionally only with a fixed isotropic  $B = 4.0 \text{ Å}^2$ ) converged to a final  $R_F$  of 0.088 for 3067 reflections.

# **Table I.** Experimental Details on $K_{1.75}Pt(CN)_4 \cdot 1.5H_2O$ (KDEF)

Cell constants at T = 22 °C: a = 10.323 (14) Å, b = 9.285 (13) Å,  $c = 11.865 (17) \text{ A}, \alpha = 77.31 (3)^{\circ}, \beta = 114.85 (5)^{\circ}, \gamma = 73.84$  $(2)^{\circ}$ Cell volume: 914.25 Å<sup>3</sup> Molecular weight of KDEF: 394.59 g/equiv Calculated density: 2.866 g cm<sup>-3</sup> Measured density: 2.820(5) by flotation in CHBr<sub>3</sub>/CCl<sub>4</sub> Z = 4Space group:  $P\overline{1}$  [ $C_1^i$ , No. 2] Radiation: Mo K $\alpha$ ,  $\lambda$  0.710 69 Å (Ross 1, Zr Filter) Attenuator: Cu foil at 10 000 Hz Take off angle: 2°  $\operatorname{Max} 2\theta: 50^{\circ} (\pm h \pm k + l)$ Scan type:  $\theta - 2\theta$  coupled Scan width: 1.4° Scan speed: 0.1° step Counting time: 5 s/step (background 20 s each side of peak) Crystal: c axis mounted Volume =  $0.3112 \times 10^{-6} \text{ cm}^3 (0.0060 \times 0.0024 \times 0.0200 \text{ cm})$ Absorption coefficient =  $169.80 \text{ cm}^{-1}$ Max transmission factor = 0.63Min transmission factor = 0.40No. of reflections collected = 3227 $R_F$  for all reflections = 0.088 (3067)  $R_F$  for reflections where  $F_{obsd} > 3\sigma F_{obsd} = 0.050$  (1840 ref)  $\Sigma_2 = 1.70$ 

The quantity minimized in the refinement is  $\sum w(F_0^2 - F_c^2)^2$  where  $F_{\rm o}$  and  $F_{\rm c}$  are the observed and calculated structure factor amplitudes and the weights w are given by  $1/\sigma^2(F_0)^2$ . The agreement indices are defined as  $R_F = \sum ||F_0| - |F_c|| / \sum F_0$ ,  $\Sigma_2 = \sum [w(F_0^2 - F_c^2)^2 / (N_0^2 - F_c^2) / (N_0^2 - F_c^2) / (N_0^2 - F_c^2) / (N_0^2 - F_c^2) / (N_0^2 - F_c$  $(-N_{\rm R})^{1/2}$ , where N<sub>0</sub> is the number of independent observations and  $N_{\rm R}$  the number of parameters varied. The above  $R_F$  values include all the reflections, many of which are unobserved or very weak. The final agreement indices of  $R_F = 0.050$  for  $F_0 > 3\sigma(F_0)$  and  $\Sigma_2 = 1.70$ are perhaps more representative in indicating the excellence of the refinement. Since the exact H<sub>2</sub>O and K<sup>+</sup> ion composition of the cell was in doubt,<sup>17,18,22</sup> the multipliers of the oxygen atoms and potassium ions were varied in one of the final refinements. The multipliers converged to the following values: K(1), 0.980 (18); K(2), 0.967 (17); K(3), 1.003 (16); K(4), 0.521 (16) (at special position (1/2,0,0)); O(1), 1.13 (6); O(2), 0.98 (6); and O(3), 1.00 (6). These results indicate that the  $K^+$  ion and  $H_2O$  sites are fully occupied.

The stoichiometry of 3.5 K<sup>+</sup> ions and 3 H<sub>2</sub>O molecules in the asymmetric unit was somewhat surprising; although the earliest report<sup>17</sup> had given exactly that stoichiometry, later chemical studies of KDEF<sup>18,22</sup> gave K<sub>1.74</sub>Pt(CN)<sub>4</sub>·1.8H<sub>2</sub>O and K<sub>1.78</sub>[Pt(CN)<sub>4</sub>]-Br<sub>0.034</sub>·2H<sub>2</sub>O as representing the composition. The equivalence of the materials was verified through comparison of their respective reduced unit cell constants.<sup>20,21</sup> In view of the possibility that halide ion may be incorporated in the lattice a search of the final difference Fourier was made for weak peaks which could be identified with chlorine. Although several weak peaks were found at the noise level of the map (0.3 e<sup>-</sup>/Å<sup>2</sup>) which could be possible halide sites, none were refinable.

The thermal ellipsoid parameters  $\beta_{22}$  (0.0393) for K(4) and  $\beta_{11}$  (0.0263) for O(3) were observed to be relatively large indicating the possibility of disorder and careful examination of the final difference Fourier gave additional credence to this possibility. No other atoms gave any similar indications. Two-position disorder models for both K(4) and O(3) were then incorporated into a least-squares refinement. Both models refined to yield two sites for both K(4) and O(3), however, with no change in the *R* factor. The site separation of the two K<sup>+</sup> sites was 0.72 (2) Å and of the two O sites was 0.76 (6) Å. The anisotropic thermal parameters of N(3) (see Figures 2 and 5a), which is bonded to both K(1) and O(3), show a very small  $\beta_{11}$  (0.0005) contribution and are probably greatly affected by the K(4) and O(3) disorder. Parameter changes for other atoms were insignificant.

Because of the disorder and the space group ambiguity a limited number of attempts were made to refine in the noncentrosymmetric space group P1. The large increase in number of parameters prohibited carrying out a complete noncentrosymmetric refinement in P1; however, all indications point to  $P\overline{1}$  as the correct space group. The existence of disorder in K(4) and O(3) positions, however, if accepted and assumed to be static does imply of course that the local structure Nature of Pt Chain Distortion in  $K_{1.75}Pt(CN)_{4}\cdot 1.5H_2O$ 

 
 Table II. Fractional Atomic Coordinates for KDEF with Estimated Standard Deviations given in Parentheses

| Jotminated a |                 | B             |              |
|--------------|-----------------|---------------|--------------|
| Atoms        | x               | У             | z            |
| Pt(1)        | 0               | 0             | 0            |
| Pt(2)        | 0.009 26 (10)   | -0.021 37 (8) | 0.256 65 (9) |
| Pt(3)        | 0               | 0             | 1/2          |
| C(1)         | 0.050 (2)       | -0.239 (2)    | 0.054 (2)    |
| N(1)         | 0.087 (2)       | -0.374 (2)    | 0.085 (2)    |
| C(2)         | 0.235 (2)       | -0.062 (2)    | 0.097 (2)    |
| N(2)         | 0.363 (2)       | -0.100 (2)    | 0.148 (2)    |
| C(3)         | -0.237 (2)      | 0.074 (2)     | 0.402 (2)    |
| N(3)         | -0.367 (2)      | 0.116 (2)     | 0.349 (2)    |
| C(4)         | -0.021 (2)      | 0.229 (2)     | 0.446 (2)    |
| N(4)         | -0.027 (2)      | 0.357 (2)     | 0.412 (2)    |
| C(1)'        | -0.119 (2)      | -0.152 (2)    | 0.231 (2)    |
| N(1)'        | -0.193 (2)      | -0.222 (2)    | 0.219 (2)    |
| C(2)'        | 0.134 (2)       | 0.110(2)      | 0.275 (2)    |
| N(2)'        | 0.205 (2)       | 0.188 (2)     | 0.282 (2)    |
| C(3)'        | 0.198 (2)       | -0.236 (2)    | 0.364 (2)    |
| N(3)′        | 0.302 (2)       | -0.361 (2)    | 0.428 (2)    |
| C(4)'        | -0.185 (2)      | 0.186 (2)     | 0.156 (2)    |
| N(4)′        | -0.299 (2)      | 0.303 (2)     | 0.092 (2)    |
| K(1)         | 0.400 3 (6)     | 0.395 5 (5)   | 0.329 4 (5)  |
| K(2)         | -0.269 9 (7)    | -0.386 4 (6)  | 0.392 4 (6)  |
| K(3)         | -0.112 5 (5)    | 0.501 1 (5)   | 0.129 8 (5)  |
| K(4)         | <sup>1</sup> /2 | 0             | 0            |
| O(1)         | -0.451 (2)      | -0.481 (2)    | 0.199 (2)    |
| O(2)         | -0.446 (2)      | -0.170 (2)    | 0.448 (2)    |
| O(3)         | 0.365 (2)       | 0.249 (2)     | 0.089 (2)    |
| H(1)         | 0.455 (28)      | -0.377 (26)   | 0.099 (25)   |
| H(2)         | -0.482 (27)     | 0.440 (26)    | 0.158 (24)   |
| H(3)         | 0.498 (31)      | -0.200 (28)   | 0.406 (27)   |
| H(4)         | -0.408 (29)     | -0.104 (27)   | 0.462 (24)   |
| H(5)         | 0.470 (30)      | 0.229 (24)    | 0.171 (26)   |
| H(6)         | 0.348 (27)      | 0.164 (28)    | 0.136 (24)   |
|              |                 |               |              |

is actually noncentrosymmetric and that  $P\overline{1}$  applies to the average structure. The atom multipliers were also varied in one of the final refinements of the disordered model. The K<sup>+</sup> ion and H<sub>2</sub>O stoichiometry were unchanged.

The atomic coordinates for the average structure of KDEF are listed in Table II and the anisotropic temperature factors are listed in Table III. The Pt, C, N, K<sup>+</sup>, and O scattering factors were taken from the compilation of Cromer and Waber<sup>24</sup> and modified for the real and imaginary components of anomalous dispersion.<sup>25</sup> Hydrogen scattering factors were taken from ref 26. Inorganic Chemistry, Vol. 15, No. 10, 1976 2457



Figure 2. A single wavelength of the Pt atom chain repeat showing atom labeling and staggering of the TCP units along the Pt chain.

The raw x-ray data were reduced using the program DATALIB<sup>27</sup> for input into the Fourier and least-squares refinement programs S5FOUR<sup>28</sup> and S5XFLS,<sup>28</sup> respectively. All distances, angles, and esd's were calculated using the program S5FFE.<sup>28</sup> Molecular drawings were made using the program ORTEP.<sup>29</sup>

Structure Description. The interatomic distances for the structure of KDEF are given in Table IV while the interatomic angles are listed in Table V. Figure 2 depicts positions and labeling for all atoms along the Pt chain.

The crystal structure of KDEF represents a complex mixture of a metal-metal, ionic, and hydrogen-bonded material. An important feature of the structure is the transversely distorted nonlinear Pt atom polymeric chain involving four TCP groups, which lies parallel to the crystallographic c axis and shows a repeat of 11.865 (17) Å. Pt(1) and Pt(3) lie at the  $\overline{1}$  positions (0,0,0) and (0,0,1/2) while Pt(2) lies at the general position  $\pm (0.009, -0.021, 0.256)$ , thus giving rise to a zig-zag chain with the chain sequence ...Pt(2)-Pt(1)-Pt(2)-Pt(3)-Pt(2)-Pt(1).... There are three inequivalent Pt atoms and two unique Pt-Pt distances, Pt(1)-Pt(2) = 2.967 (1) Å and Pt(2)-Pt(3) = 2.976 (1) Å. It is well known that least-squares error estimates for structural parameters are usually underestimated by factors of 2 to 3, thus the

| Table III. | Anisotropic Thermal Par | ameters <sup>a</sup> (×10 <sup>4</sup> ) of KDEF | with Estimated Standa | d Deviations in Parentheses |
|------------|-------------------------|--------------------------------------------------|-----------------------|-----------------------------|
|------------|-------------------------|--------------------------------------------------|-----------------------|-----------------------------|

| <br>Atoms | $\beta_{11}$ | β22       | β <sub>33</sub> | β <sub>12</sub> | β <sub>13</sub> | β <sub>23</sub> |  |
|-----------|--------------|-----------|-----------------|-----------------|-----------------|-----------------|--|
| Pt(1)     | 44.5 (18)    | 44.8 (13) | 48.4 (16)       | -16.1 (12)      | 20.8 (14)       | -8.7 (10)       |  |
| Pt(2)     | 39.0 (13)    | 49.4 (10) | 45.3 (11)       | -11.7 (9)       | 17.5 (10)       | -9.5 (8)        |  |
| Pt(3)     | 35.0 (17)    | 43.6 (13) | 44.9 (15)       | -7.8(11)        | 13.9 (13)       | -9.6(10)        |  |
| C(1)      | 86 (29)      | 83 (27)   | 115 (19)        | -50 (22)        | 44 (20)         | -5 (17)         |  |
| N(1)      | 133 (32)     | 63 (21)   | 102 (26)        | -48 (21)        | 69 (25)         | -18(18)         |  |
| C(2)      | 86 (37)      | 48 (24)   | 117 (35)        | -29 (23)        | 10 (30)         | 7 (22)          |  |
| N(2)      | 44 (28)      | 177 (33)  | 107 (30)        | -35 (24)        | 20 (24)         | -10(24)         |  |
| C(3)      | 98 (39)      | 63 (25)   | 119 (34)        | -33 (24)        | 70 (31)         | -20(22)         |  |
| N(3)      | 5 (23)       | 184 (32)  | 98 (28)         | -17(22)         | -5(21)          | -1(23)          |  |
| C(4)      | 51 (25)      | 51 (23)   | 120 (20)        | -10(18)         | 14 (19)         | 2 (16)          |  |
| N(4)      | 143 (33)     | 76 (22)   | 74 (23)         | -39 (21)        | 60 (24)         | -22(17)         |  |
| C(1)'     | 83 (31)      | 55 (22)   | 119 (19)        | -1(20)          | 37 (21)         | 12 (15)         |  |
| N(1)'     | 129 (33)     | 97 (24)   | 96 (27)         | -72(23)         | 71 (25)         | -42(20)         |  |
| C(2)'     | 34 (23)      | 58 (22)   | 50 (23)         | -1(19)          | 17 (20)         | 6 (17)          |  |
| N(2)'     | 101 (30)     | 150 (29)  | 73 (25)         | -90 (24)        | 30 (23)         | -47(21)         |  |
| C(3)'     | 90 (33)      | 41 (24)   | 98 (30)         | -24(23)         | 42 (27)         | -27(20)         |  |
| N(3)'     | 85 (28)      | 85 (25)   | 101 (27)        | -16(22)         | 35 (23)         | -21(20)         |  |
| C(4)′     | 84 (32)      | 73 (26)   | 87 (29)         | -35 (24)        | 39 (26)         | -35(21)         |  |
| N(4)′     | 57 (25)      | 92 (24)   | 128 (30)        | -11(21)         | 42 (24)         | -14(21)         |  |
| K(1)      | 93 (8)       | 141 (8)   | 100 (8)         | -16(6)          | 52 (6)          | -40 (6)         |  |
| K(2)      | 194 (12)     | 150 (9)   | 144 (10)        | -88 (8)         | 124 (9)         | -66 (7)         |  |
| K(3)      | 108 (8)      | 103 (7)   | 96 (7)          | -50(5)          | 54 (6)          | -33(5)          |  |
| K(4)      | 97 (14)      | 393 (27)  | 166 (17)        | 36 (14)         | 75 (13)         | 115 (15)        |  |
| O(1)      | 162 (34)     | 195 (34)  | 123 (30)        | -27(24)         | 40 (26)         | -46 (22)        |  |
| O(2)      | 105 (30)     | 175 (32)  | 104 (27)        | -92 (23)        | 28 (23)         | -66(22)         |  |
| O(3)      | 263 (54)     | 167 (35)  | 141 (36)        | -106 (34)       | -91 (33)        | 44 (26)         |  |

<sup>a</sup> The form of the anisotropic temperature factor is:  $\exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{33} + 2hk\beta_{12} + 2hl\beta_{13} + 2kl\beta_{33})]$ .

Table IV. Interatomic Distances for KDEF with Estimated Standard Deviations Given in Parentheses

| Bond Bond J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Bond                       |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|--|
| distance, distan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | tance,                     |  |  |
| Atoms & Atoms & Atoms A Atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Å                          |  |  |
| (A) Distances within the Pt–Pt Chain (J) Distances from O(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |  |  |
| Pt(1)-Pt(2) 2.967 (1) Pt(2)-Pt(3) 2.976 (1) O(2)-H(3) 0.75 (26) O(2)-H(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.81 (25)                  |  |  |
| (B) Distances within the TCP(1) Unit which are Unique (Pt(1)) $O(2)K(2) = 2.70(2) O(2)K(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.75 (2)                   |  |  |
| $\begin{array}{c} (b) Distances when the for the one for the on$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2) 3.06 (3)                |  |  |
| Pt(1)-C(1) 2.01(2) Pt(1)-C(2) 2.03(2) O(2)-H(4)N(3) 3.12(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |  |  |
| C(1)-N(1) 1.13 (2) $C(2)-N(2)$ 1.10 (3) (K) Distances from O(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |  |  |
| O(3)-H(6) $O(3)-H(5)$ $O(3)-H(5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.04 (26)                  |  |  |
| (C) Distances within the TCP(2) Unit $Q(3)K(3) = 2.69(2) - Q(3)K(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.99 (3)                   |  |  |
| Pt(2)-C(1) 2.01 (2) $Pt(2)-C(2)$ 2.00 (2) $O(3)-H(5)N(3)$ 2.82 (3) $O(3)-H(6)N(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2) $3.17(3)$               |  |  |
| Pt(2)-C(3) 2.01 (2) $Pt(2)-C(4)$ 1.99 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                            |  |  |
| $C(1)^{-}N(1)^{-}$ 1.12 (2) $C(2)^{-}N(2)^{-}$ 1.15 (2) (L) Distances from N(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.00 (2)                   |  |  |
| $C(3)^{2}-N(3)^{2}$ 1.14 (2) $C(4)^{2}-N(4)^{2}$ 1.15 (2) $N(1)^{2}-K(3)$ 2.80 (2) $N(1)^{2}-K(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3.00 (2)                   |  |  |
| (D) Distances within the TCP(3) Unit which Are Unique (Pt(3) $N(1)K(3) = 3.11(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |  |  |
| Lies at a Center of Symmetry) (M) Distances from N(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |  |  |
| Pt(3)-C(3) 2.03 (2) Pt(3)-C(4) 2.00 (2) $N(2)$ H(6) 2.39 (23) $N(2)$ H(6)-O(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3) 3.17 (3)                |  |  |
| C(3)-N(3) 1.11 (3) $C(4)-N(4)$ 1.14 (2) $N(2)H(3)$ 2.59 (27) $N(2)H(3)-O(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2) 3.06 (3)                |  |  |
| N(2)K(4) = 2.83(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |  |  |
| (E) Distances from the $K'(1)$ for (N) Distances from N(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |  |  |
| R(1) - O(2) = 2.75(2) - R(1) - R(3) = 2.89(2) = R(3) - R(5) = 1.85(26) - R(3) - R(5) - O(1) = 1.85(26) - R(3) - R(5) - R(5) = 1.85(26) - R(5) - R(5) - R(5) = 1.85(26) - R(5) - R(5) - R(5) = 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.85(26) - 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3) 2.82(30)                |  |  |
| R(1) - O(1) = 2.87(2) - R(1)N(1) = 3.00(2) = N(3)H(4) = 2.43(24) - N(3)H(4) = 0.00(2) = 0.00(2)H(4) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2) = 0.00(2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (3) (3) (3) (3)            |  |  |
| K(1) = -N(3) 2.89 (2) $K(1) = -N(3)$ 3.08 (2) $N(3) = -K(1)$ 2.89 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>) 0.12</i> ( <i>0</i> ) |  |  |
| K(1) = -N(2) 3.13 (2) (0) Distances from $N(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |  |  |
| (F) Distances from the K <sup>+</sup> (2) Ion $N(4) = K(2) = 2 S(2) = N(4) + K(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.04 (2)                   |  |  |
| $K(2)O(2) \qquad 2.70(2)  K(2)N(3)' \qquad 2.99(2) \qquad N(4)K(2) \qquad 2.02(2)  N(4)K(3) \qquad (4)K(3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.94 (2)                   |  |  |
| K(2) - O(1) 2.77 (2) $K(2) - N(4)$ 3.10 (2) $N(4) - K(2)$ 5.10 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |  |  |
| K(2) - N(1)' 2.80 (2) (P) Distances from $N(1)'$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |  |  |
| K(2)N(4) 2.82 (2) $N(1)'K(2)$ 2.80 (2) $N(1)'K(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.85 (2)                   |  |  |
| (C) Distances from the $K^+(3)$ Ion $N(1)'K(3) = 3.03$ (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                            |  |  |
| K(3) = -O(3) 2.69 (2) $K(3) = -N(1)'$ 3.03 (2) (Q) Distances from N(2)'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |  |  |
| R(3) = R(3) = R(3) = R(1) = 3.11(2)<br>R(3) = R(1) = 3.11(2)<br>R(2)' = -K(1) = 3.13(2)<br>R(2)' = -H(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $2.62(25)^{a}$             |  |  |
| R(3) = -N(4) 2.94 (2) $R(3) = -N(2)'$ 3.14 (2) $N(2)' =K(3)$ 3.14 (2) $N(2)' =H(4) = -O(4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2) $3.05(3)^{\acute{a}}$   |  |  |
| R(3) - R(4)' = 2.97(2) - R(5) - R(5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ,                          |  |  |
| $N(2)' = V(1) = 2 \frac{1}{2} 1$ | 2.00 (2)                   |  |  |
| (H) Distances from the K <sup>+</sup> (4) Ion which Are Unique (Ion Lies $N(3) - K(1) = 2.09(2)$ $N(3) - K(2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.99 (2)                   |  |  |
| on a Center of Symmetry $N(3) N(1) = 3.08 (2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |  |  |
| K(4)N(2) 2.83 (2) $K(4)O(3)$ 2.99 (3) (S) Distances from N(4)'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |  |  |
| K(4)N(1) 2.85 (2) $N(4)'H(1)$ 1.96 (24) $N(4)'H(1) - O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1) 3.00 (3)                |  |  |
| (I) Distances from $O(1)$ $N(4)'H(2)$ 2.48 (24) $N(4)'H(2) - O(1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1) 3.03 (3)                |  |  |
| O(1)-H(1) 1.13 (24) $O(1)-H(2)$ 1.01 (23) $N(4)'K(3)$ 2.98 (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                            |  |  |
| P(1) - K(2) = 2.77(2) - P(1) - K(1) = 2.87(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                            |  |  |
| O(1)-H(1)N(4)' 3.00 (3) $O(1)-H(2)N(4)'$ 3.03 (3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                            |  |  |

 $^{a}$  This O-H- - -N interaction although short enough to be considered significant is dubious in view of the poor bonding angle and longer H-N separation. More accurate proton locations may indicate this to be a bifurcated hydrogen bond.

two Pt-Pt separations are not necessarily significantly different. The Pt-Pt distances are on the order of 0.1 Å longer than those found in KCP(Br) and KCP(Cl) and they appear to correlate with the smaller oxidation state of Pt in KDEF, as depicted in Figure 3. The chain distortion is defined by the displacement of Pt(2) from the chain axes c by 0.198 (1) Å which could also be considered the amplitude of a transverse distortion wave; the Pt(1)-Pt(2)-Pt(3) angle is 173.21 (2)°.

Each Pt atom is bonded to four CN- ligands extending perpendicular to the Pt chain in an approximate square-planar configuration. These tetracyanoplatinate (TCP) units stack parallel to c, thus resulting in a structure consisting of parallel arrays of TCP units linked by H<sub>2</sub>O molecules and K<sup>+</sup> ions. Distances and angles within each TCP unit are given in Tables IV and V, respectively. The average bond distances and angles within each TCP unit are as follows: TCP(1), Pt-C =2.02 (2) Å, C-N = 1.12 (2) Å, Pt-C-N = 176.6 (21)°; TCP(2), Pt-C = 2.00(2) Å, C-N = 1.14(2) Å, Pt-C-N =  $177.1(20)^{\circ}$ ; TCP(3), Pt-C = 2.02 (2) Å, C-N = 1.12(2) Å, Pt-C-N = 177.4 (21)°. Each TCP unit is staggered with respect to the unit directly above and below it in the chain and nearly but not exactly eclipsed by alternate units. (See Table VI for the various C-Pt-Pt-C dihedral angles along the Pt chain.) The average dihedral angles as shown in Figure 6 are:  $TCP(1)-TCP(2) = 45.3 (5)^{\circ}, TCP(1)-TCP(3) = 5.1 (2.1)^{\circ}, TCP(2)-TCP(3) = 49.8 (3.7)^{\circ}, and TCP(2)-TCP(2)' = 1.7 (1.1)^{\circ}.$ Each TCP unit is planar with only small deviations from planarity.

The structure contains four types of potassium ions, three in general positions and one in the special position at (1/2,0,0) or disordered about that position. As can be seen in Figure 4 the K<sup>+</sup> ions line up in rather distinct layers within the KDEF lattice. The coordination spheres



Figure 3. Correlation of the Pt-Pt spacing in various highly conducting inorganic one-dimensional materials with oxidation state.

to 3.3 Å and the associated bond distances for each  $K^+$  ion are shown in Figures 5a–d, while distances and angles are tabulated in Tables IV and V. K(1) and K(3) are both seven-coordinated ions, while K(2) and K(4) show six coordination.

All  $H_2O$  molecule hydrogen atoms participate in rather weak hydrogen bonding of the type O-H---N as deduced from the O--N separations which range from 2.82 to 3.17 Å. Each proton is bonded **Table V.** Interatomic Angles for KDEF with Estimated Standard Deviations Given in Parentheses

|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ato          | oms           |                     | Angle,             | deg          |            |                 | Ato           | ms               |                    |         | Ang        | le,         | de              | g        |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------------|--------------------|--------------|------------|-----------------|---------------|------------------|--------------------|---------|------------|-------------|-----------------|----------|
| P       | t(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pt(          | 2)-F          | (A) /<br>Pt(3)      | Angles v<br>173.21 | vithi<br>(2) | n tł       | ne I            | Pt-F          | rt Cł            | nain               |         |            |             |                 |          |
| (B      | ) Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | igle         | s wi          | thin th             | e TCP(             | 1) Ui        | nit v      | wh              | ich           | Are              | Uniqu              | ue      | (Pt(       | 1)          | at              | ī)       |
| P       | t(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ē(1          | 1)-N          | (1)                 | 175.9              | (19)         | Pt(        | 1)-             | -C(2          | 2)-N             | (2)                |         | 177        | .3          | (2              | 3)       |
| C       | (1)-l<br>(2)-l                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pt(1<br>Pt(1 | l)-C<br>l)-C  | (1) (2)             | 180.0              | (0)<br>(0)   | C(1<br>C(2 | 1)-<br>2)-      | Pt(1<br>Pt(1  | l)-C<br>l)-C     | (2)<br>(1)         |         | 87<br>92   | .9<br>.1    | (7)<br>(7)      | )<br>)   |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |               | (C) A               | Angles w           | vithi:       | 1 th       | еĴ              | CP            | (2) U            | Jnit               |         |            |             |                 |          |
| P       | t(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>C</b> (1  | 1)'-1         | N(1)'               | 177.1              | (23)         | Pt(        | 2).             | -C(2          | 2)'-N            | N(2)'              |         | 178        | .5          | (1)             | 8)       |
| r<br>C  | t(2)-<br>(1)'-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U(:<br>Pt(   | 5) −r<br>2)_( | N(3)<br>T(2)'       | 177.8              | (20)         |            | 2)<br>3)'.      | -C(4<br>-Pt(  | り -r<br>2)-(     | N(4)<br>2(4)'      |         | 170<br>176 | .2          | (2)             | )        |
| č       | (1)'-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pt(          | 2)-(          | C(4)'               | 91.0               | (7)          | C(         | 1)'·            | -Pt(          | 2)-C             | C(3)'              |         | 86         | .2          | (7)             | Ś        |
| С       | (2)'-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Pt(          | 2)-(          | C(4)'               | 88.4               | (7)          | C(2        | 2)'             | -Pt(          | 2)-0             | C(3)'              |         | 94         | .5          | (7              | )        |
| (E<br>D | )) Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | igle         | s wi          | thin th             | 170 4              | 3) U         | nit y      | wh              | ich           | Are              | Uniq               | ue      | (Pt(       | 3)          | at              | 1)       |
| r<br>C  | (3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C()<br>Pt()  | 3)-N          | (3)                 | 180.0              | (22)         | CC         | , 3)-<br>3)-    | PtC           | *)-N<br>3)-C     | (4)                |         | 87         | .3          | $(\frac{2}{7})$ | )        |
| č       | (4)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pt(:         | 3)-C          | 2(4)                | 180.0              | (0)          | C(4        | 4)-             | Pt(           | 3) <b>-</b> Č    | (3)                |         | 92         | .1          | (7              | )        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |               | (E)                 | Angles             | arou         | nd         | the             | e K⁺          | (1) I            | on                 |         |            |             |                 |          |
| 0       | (2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>K(</b> ]  | l)-0          | )(1)                | 145.7              | (5)          | N(         | 3)-             | -K(1          | l)-N             | (3)'               |         | 152        | .4          | (5              | )        |
| 0       | (2) - (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K()          | 1)-N          | (3)                 | 81.9               | (5)          | N(         | 3)-             | -K(]          | L)-N             | (1)                |         | 127        | .0          | (5)             | )        |
| 0       | 2)-<br>2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | K(1<br>K(1   | 1)-N          | (3)<br>((1)         | 125.2              | (5)          | N(<br>N(   | 3)-<br>31-      | -K()<br>-K()  | L)≁N             | (3)                |         | 82         | ./          | (5)             | )<br>\   |
| c       | $(2)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K            | 1)-N          | (3)'                | 73.6               | (5)          | N          | 3)'             | -K(           | 1)-N             | (2)                |         | 82         | .5          | (5)             | Ś        |
| č       | (2) -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K(           | 1)-N          | (2)'                | 62.0               | (5)          | N(         | 3)'             | -K(           | 1)-N             | V(3)'              |         | 79         | .7          | (5              | Ś        |
| Ċ       | )(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>K</b> (1  | 1)–N          | l(3)                | 73.6               | (S)          | N(         | 3)'             | -K(           | 1) <b>-</b> N    | N(2)'              |         | 114        | .0          | (5              | )        |
| С       | )(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>K(</b> :  | 1)-N          | (3)'                | 104.0              | (5)          | N(         | 1)-             | - <b>K</b> (1 | l)-N             | (3)′               |         | 146        | .0          | (4              | )        |
| C       | )(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K()          | 1)-N          | I(1)                | 88.9               | (5)          | N(         | 1)-             | -K(1          | l)-N             | (2)'               |         | 75         | .7          | (4              | )        |
| 0       | (1) - (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K()          | 1)-N          | (3)'                | 125.0              | (5)          | N(         | 3)              | -K(           | 1)-1             | N(2 <sup>*</sup> ) |         | 133        | .9          | (5              | )        |
| C       | (1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>~</b> (.  | 1)-IN         | (2)<br>(E)          | 155.0              | (0)<br>arou  | nd         | th/             | . v+          | ( <b>2</b> ) 1   | lan                |         |            |             |                 |          |
| c       | (2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | KC           | 2)-0          | (1)<br>(1):         | 112.3              | (5)          | nu<br>Ní   | $\frac{11}{11}$ | -K(           | (2)-N            | J(4)               |         | 77         | .9          | (5              | )        |
| č       | $(2)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K            | 2)-N          | (1)'                | 109.4              | (5)          | N(         | $\tilde{1}$     | -K(           | 2)-N             | v(3)'              |         | 164        | .8          | (5              | ś        |
| Ċ       | )(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K(           | 2)́–N         | I(4)                | 163.9              | (6)          | N(         | 1)′             | -K(           | 2) <b>-</b> N    | v(4)               |         | 76         | .8          | (5              | <u>)</u> |
| C       | )(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K(2          | 2)-N          | I(3)'               | 85.7               | (5)          | N(         | 4)-             | -K(2          | 2)-N             | (3)'               |         | 87         | .4          | (5              | )        |
| C       | )(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K()          | 2)-N          | I(4)                | 89.4               | (5)          | N(         | 4)              | -K(2          | 2)-N             | (4)                |         | 78         | .2          | (5              | )        |
| C       | )(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K()          | 2)-N          | (1)                 | 92.3               | (5)          | N(         | 3)              | -K(           | 2)-r             | N(4)               |         | 103        | .8          | ()              | )        |
| C       | )(1)-<br>)(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | KC.          | 2)-N<br>2)_N  | I(3)'               | 81.6               | (3)          |            |                 |               |                  |                    |         |            |             |                 |          |
| č       | $(1)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | K(           | 2) - N        | I(4)                | 158.0              | (5)          |            |                 |               |                  |                    |         |            |             |                 |          |
|         | . ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              |               | (G)                 | Angles             | arou         | ınd        | th              | e K'          | (3)              | Ion                |         |            |             |                 |          |
| C       | )(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>K</b> (   | 3)-N          | I(1)                | 90.5               | (7)          | N(         | 4)              | -K(           | 3)-N             | [(4)]              |         | 82         | .3          | (5              | )        |
| C       | )(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K(           | 3)-N          | 1(4)                | 133.7              | (8)          | N(         | 4)              | -K(           | 3)-N             | (1)'               |         | .72        | .6          | (5              | )        |
| 0       | (3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | K(           | 3)-N          | (4) <sup>′</sup>    | 88.3               | (6)          | N(         | 4)·             | -K()          | 3)-N             | (1)                |         | 136        |             | (4              | 2        |
| č       | )(3)-<br>)(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | K(           | 3)-N          | V(1)<br>J(1)        | 82 5               | (0)          |            | 4)<br>(4)       |               | 3)-IN<br>13)-N   | N(2)               |         | 120        | 11          | (3)             | 3        |
| č       | (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) - (3) | -K(          | 3)-N          | (2)'                | 154.6              | (8)          | N(         | 4)              | -K(           | 3)-1             | N(1)               |         | 74         | .7          | (5              | ő –      |
| N       | J(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -K(          | 3)-N          | J(4)                | 116.6              | (5)          | N(         | (4)             | ′-K(          | (3) <b>-</b> 1   | N(2)'              |         | 91         | 6           | (4              | Ó.       |
| N       | J(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -K(          | 3)-N          | I(4)'               | 153.4              | (5)          | N(         | (1)             | '-K(          | [3)-1            | N(1)               |         | 150        | ).8         | (5              | <u>)</u> |
| N<br>N  | 1(1) <del>-</del><br>1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -K()         | 3)-N<br>2) N  | $(1)^{(1)}$         | 84.8               | (5)          | N(         | (1)             | -K(           | 3)-N<br>2) N     | (2)'               |         | 127        | '.1<br>) 0  | (3              | 9)<br>5  |
| N       | J(1)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -K(          | 3)-N          | J(2)'               | 78.4               | (5)          | 14(        | τ) <sup>,</sup> |               | 5)-IN            | (2)                |         | 14         |             | (5              | 9        |
| -       | •(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              | <i>o,</i> 1   | ( <b>-</b> )<br>(H) | Angles             | aroi         | ınd        | th              | e K           | <sup>+</sup> (4) | Ion                |         |            |             |                 |          |
| N       | J(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -K(          | 4)-N          | ۹(1) <sup>۲</sup>   | 90.8               | (5)          | N(         | (2)             | -K(-          | 4)-N             | (2)                |         | 180        | ).0         |                 |          |
| Ň       | v(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -K(          | 4) <b>-</b> ( | D(3)                | 65.9               | (6)          | N(         | 1)              | '-K(          | ( <b>4</b> )-1   | N(1)'              |         | 180        | ).0         |                 |          |
| ١       | <b>V(1)</b> ′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -K           | (4)-(         | 0(3)                | 107.9              | (5)          | 00         | (3)             | -K(           | 4) <b>-</b> C    | )(3)               |         | 18(        | ).0         |                 |          |
| ļ       | v(2)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -K(          | 4)-N          | N(1)'               | 89.1               | (5)          |            |                 |               |                  |                    |         |            |             |                 |          |
| 1<br>M  | N(2)-<br>J(1)'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -K(<br>_V    | 4)-(<br>(4)-4 | )(3)<br>((3)        | 114.0<br>72 0      | (0)<br>(5)   |            |                 |               |                  |                    |         |            |             |                 |          |
| r       | 1(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -1           | (+)-(         | 0(3)                | 12.0               |              |            |                 |               |                  |                    |         |            |             |                 |          |
|         | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ~            | 1\ T          | 1(2)                | (i) An             | gles         | aro        | un              | d O           | (1)              | NICA               | ,       | 1 4 4      |             | 1 6             | `        |
| E<br>C  | 1(1)-<br>)(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -О(<br>.ц/   | 1)<br>2)      | 1(2)<br>N(4)'       | 88(]<br>112(1      | (7)<br>6)    | 0          | (1)             | -H(           | 1)               | -IN(4)             | ,       | 145        | • (         | 12              | )        |
| Ċ       | <i>(</i> 1) <sup>•</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -11(         | 2)            | -11(4)              |                    |              |            |                 |               |                  |                    |         |            |             |                 |          |
| ,       | 1/22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ~            | <b>1</b> \ 1  |                     | (J) Ar             | igles        | aro        | un              | dO            | (2)<br>(1)       | NICO               |         | 1.4        |             | ~~              | 、<br>、   |
| . E     | 1(5)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -U(<br>_Ц/   | 2)-⊦<br>3)-   | 1(4)<br>_N(2)       | 136 (2             | (C)<br>(C)   |            | (2)             | -H(-          | 4)<br>4)         | -N(3)              | )<br>)' | 111        | L ()<br>Z 7 | 22<br>10        | Ś        |
| Ċ       | J(4)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -11(         | ,כ            | -11(2)              | 123 (2             |              | U          | (ك)             | -11(          |                  | -11(2)             | ,       | 113        | <i>,</i> (  | 17              | )        |
| т       | J( <u>6</u> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00           | 21 7          | 1(6)                | $(\mathbf{K})$ A   | nglès        | arc        | oun             |               | (3)              | NICO               | 、<br>、  | 1.51       | <u>،</u> ر  | 17              | 、        |
| .r<br>( | .(0)-<br>)(3)-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -U(<br>-H(   | 5)-r<br>6)    | -N(2)               | 131 (1             | (5)          | U.         | (3)             | -п(           | <del>-</del> -   | -14(3)             | ,       | 131        | - (         | 1/              | ,        |
|         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              | ~             | ~ /                 |                    | -            |            |                 |               |                  |                    |         |            |             |                 |          |

to a single N atom; however, in the case of  $H_2O(2)$  hydrogen atom H(4) has a close approach to N(2)' as well as N(3) but with a longer H--N separation and an unfavorable bond angle (113°). Each O is

 Table VI.
 Twist Angles along the Pt-Pt Chain in KDEF with

 Estimated Standard Deviations Given in Parentheses
 Parentheses

| Atoms                  | Angle,<br>deg | Atoms                         | Angle,<br>deg |
|------------------------|---------------|-------------------------------|---------------|
| TCP(1)-TCP(2)          |               | TCP(2)-TCP(3)                 |               |
| C(1)-Pt(1)-Pt(2)-C(1)' | 45.2(7)       | C(4)'-Pt(2)-Pt(3)-C(4)        | 53.6 (8)      |
| C(2)-Pt(1)-Pt(2)-C(3)' | 47.0 (8)      | C(2)'-Pt(2)-Pt(3)-C(3)        | 45.9 (8)      |
| C(1)-Pt(1)-Pt(2)-C(2)' | 44.7 (7)      | C(3)'-Pt(2)-Pt(3)-C(4)        | 46.0 (7)      |
| C(2)-Pt(1)-Pt(2)-C(4)' | 44.2 (9)      | C(1)'-Pt(2)-Pt(3)-C(3)        | 53.9 (7)      |
| TCP(1)-TCP(2)          |               | TCP(2)-TCP(2)'                |               |
| C(1)-Pt(1)-Pt(3)-C(4)  | 7.2(7)        | C(2)'-Pt(2)-Pt(2)-C(1)'       | 0.6 (7)       |
| C(2)-Pt(1)-Pt(3)-C(3)  | 3.0 (6)       | C(3)'-Pt(2)-Pt(2)-C(4)'       | 2.8 (7)       |
| C(1)-Pt(1)-Pt(3)-C(4)  | 7.2 (7)       | C(1)'-Pt(2)-Pt(2)-C(2)'       | 0.6 (7)       |
| C(2)-Pt(1)-Pt(3)-C(3)  | 3.0 ໄດ້       | C(4)' - Pt(2) - Pt(2) - C(3)' | 2.8 (7)       |



Figure 4. The KDEF lattice projected down the b axis showing the Pt atom chains and layers of K<sup>+</sup> ions and H<sub>2</sub>O molecules.

tetrahedrally coordinated to two K<sup>+</sup> ions and the two hydrogen atoms.  $H_2O(1)$  bridges TCP(2) and TCP(2') units of two parallel Pt chains with O(1)-H(1)-N(4)' = 3.00 (3) Å and O(1)-H(2)-N(4)' = 3.03(3) Å.  $H_2O(2)$  and  $H_2O(3)$  bridge TCP(1) and TCP(3) units of two parallel Pt chains where O(2)-H(4)-N(3) = 3.12(3) Å, O(2)-H(3)-N(2) = 3.06(3) Å, O(3)-H(5)-N(3) = 2.82(3) Å, and O(3)-H(6)-N(2) = 3.17(3) Å. Thus only N(4)', N(3), and N(2) are involved in hydrogen bonds, each acting as acceptor for two protons. The O-H---N bonds are all nonlinear as is shown by the bond angles given in Table V. The water molecules are distributed roughly in layers parallel to the *c* axis similar to potassium as is shown in Figure 5. The hydrogen bonding and atom packing within the cell are shown by the stereoviews in Figures 6 and 7.

The environment around each N atom in the TCP chain is an indication of the ionic and hydrogen bonding forces acting in concert in the unit cell. Table IV lists close contacts to within 3.3 Å for each N atom. TCP(1) N atoms have the following coordination:  $N(1)-3K^+$  ions, N(2)-2H,  $K^+$  ions. Because of the  $\bar{I}$  center at Pt(1), the environment of Pt(1) is symmetric. TCP(2) N atoms show the following coordination:  $N(1)'-3K^+$  ions,  $N(2)'-2K^+$  ions,  $N(3)'-3K^+$  ions, and N(4)'-2H,  $K^+$  ion. The environment about Pt(2) is therefore highly asymmetric. The N atoms of TCP(3) show the following coordination: N(3)-2H,  $K^+$  ion and  $N(4)-3K^+$  ions. The Pt(3) environment is also symmetric because of the  $\bar{I}$  position and is very similar to the Pt(1) environment.

Finally each chain is displaced along c with respect to other chains in the cell. This can be seen clearly in Figure 7. This Pt chain displacement or nonalignment is a consequence of the triclinic geometry of the cell and provides better packing of the unit cell constituents.

The K(4) and O(3) disorder previously mentioned is not a major perturbation of the structure; however, the disorder introduces some interesting ramifications. Hexacoordinate K(4) is coordinated by two



Figure 5. Potassium ion coordination spheres and interaction distances (a) K(1), (b) K(2), (c) K(3), and (d) K(4).



Figure 6. Stereoscopic view of KDEF down the c axis showing hydrogen bonding and TCP unit rotation.

O(3) atoms and four N atoms and has two rather long K–O distances of 2.99 Å in the average structure. These are 0.23 Å greater than the average of the remaining K–O distances in this compound. The extension of the K(4) ellipsoid has a large component in the direction of the O(3)–K(4) vector and the disorder sites place K(4) approximately 2.7 and 3.3 Å from the average O(3) position. The result is a shorter K–O distance which is presumably energetically favorable. However, O(3) apparently increases its interactions by simultaneously shifting in its coordination sphere in a direction nearly at right angles to the K(4) shift. If we assume correlated static positions for the disordered K(4) and O(3) we find 2.89 and 2.94 Å as most probable K–O separations. The K(3)–O(3) separations become 2.66 and 2.80 Å as compared to 2.69 Å in the average structure. The K(4) and O(3) interactions with N are not greatly altered. The explanation of the disorder thus appears to lie then in a rather imperfect packing which leaves K(4) with excessive room in which to "rattle" around. H<sub>2</sub>O(3) appears to respond to the K(4) shifts in a way which suggests the disorder is dynamic rather than static. The disorder is not necessarily limited to K(4) and O(3); however, the effects must be too small to be observed in the remainder of the structure.



Figure 7. Stereoscopic view of KDEF rotated to show nonalignment of TCP units of several different chains.



Figure 8. TCP unit 2 showing the resultant  $K^+$  point charges acting on the various  $CN^-$  ligands and the resultant Pt chain deformation.

## Discussion

The driving force behind the distortion of the TCP chain is of considerable interest, since it might be construed that we are observing the result of a Peierls distortion at room temperature. However, we believe the distortion is not dependent on the electronic structure of the system but is due largely to the electrostatic environment about each TCP unit which we have described above. Our starting point is the idealized undistorted Pt chain with Pt(1) and Pt(3) at (0,0,0) and (0,0,1/2) and Pt(2) at (0,0,1/4). Since the environments about Pt(1) and Pt(3) in this model are centrosymmetric, the forces acting upon these Pt atoms are in balance yielding a resultant force of zero. The environment about TCP(2), however, is asymmetric, and we show below that there is a resultant Coulombic restoring force vector which is proportional to the asymmetric charge distribution of K<sup>+</sup> ions and of appropriate magnitude and direction to account for the Pt(2) distortion. Figure 8 shows the TCP(2) unit and the resultant  $K^+$  ion point charges acting on each N atom. The forces which hold the structure together are bonding via band formation, electrostatic, and hydrogen bonding. The assumption is made that the chain distorts because of the unbalanced Coulombic forces on the formally negative charged TCP planes due to the asymmetrically distributed K<sup>+</sup> ions and possibly because of the attractive forces due to hydrogen bonding. On closer examination, the effects of weak hydrogen bonding interactions which operate only on N(4)' of the Pt(2) cyanoplatinate ion are believed to be negligible since the observed Pt(2) distortion is in a direction nearly opposite to the resultant hydrogen bonding force vector. The attractive force exerted by a  $K^+$ ion coordinated to a Pt(2) cyanide group is to a first approximation given by  $q^+q^-/\epsilon r^2$  where  $q^+$  is the point charge on the potassium ion,  $q^-$  is the formal -0.4375 point charge on each of the N atoms of the TCP(2),  $\epsilon$  is the dielectric constant, and r is the separation between the point charges. Since r is roughly the same for all K<sup>+</sup>–N interactions and  $\epsilon$ is assumed to be a constant, the net force on Pt(2) is approximately proportional to the net K<sup>+</sup> ion point charge distribution and may be obtained by summing over all potassium ion-TCP(2) interactions. The sums of the  $K^+$  ion charge components in the direction of the Pt-N vectors are 1.378, 0.994, 1.511, and 0.000 for N(1)', N(2)', N(3)', and N(4)', respectively. The components along the x and y crystal axes of the resultant charges are then 0.601 and -1.215 which should be proportional to the forces exerted along these directions. These unbalanced point charges acting on the Pt(2)tetracyanoplatinate unit would be expected to displace it until restoring forces set up a new equilibrium. The actual displacement of Pt(2) observed in this study has x and y components of 0.096 and -0.198 Å, respectively. The ratio of magnitudes of the resultant point charges along the x and yaxis is -0.495, while the ratio of the Pt(2) shift components in the x and y directions is -0.485.

Clearly the simplified model is in good agreement with the observed direction and relative ratio of the displacement in the x and y directions; however, a more detailed calculation utilizing a charge distribution for the TCP planes, an evaluation of the microscopic dielectric constant, and forces along the chain prohibiting a distortion of the chain is necessary for a quantitative evaluation of the chain distortion. It is also possible to show very approximately that the chief restoring force is the stretching of the Pt(2)-Pt(1) and Pt(2)-Pt(3) bonds. Thus the chain distortion in KDEF appears to be mainly due to the asymmetric  $K^+$  ion distribution.

The Pt-Pt distance in KDEF is ~0.08 Å greater than in KCP(Br) due in part to the lower partial oxidation state (+2.25) compared to the value +2.3 in the latter compound. The higher oxidation state signifies fewer electrons in the conduction band and consequently less Coulombic repulsion, thus shorter interplanar Pt-Pt spacings are anticipated and observed for complexes which have a higher degree of partial oxidation. The two Pt-Pt distances in KDEF differ by 0.009 Å which, if real, may be correlated with the asymmetric K<sup>+</sup> ion distribution. Preliminary conductivity measurements have shown that the conductivity of KDEF is less than that of the other KCP complexes;<sup>19</sup> however, single crystal four probe measurements are necessary to establish the intrinsic electrical properties of this novel system.

The average Pt-C and C-N bond distances are quite similar to previously reported TCP materials. The average Pt-C-N

bond angle is 177.0° thus the configuration is slightly nonlinear as was shown for K<sub>2</sub>Pt(CN)<sub>4</sub>·3H<sub>2</sub>O<sup>30</sup> and for KCP(Br) and KCP(Cl).9-14 The strong ligand repulsion is shown by the staggering of the TCP units juxtaposed along the chain. TCP(1) and TCP(3) are not exactly eclipsed perhaps because of the hydrogen bonding water molecules and the unit cell packing.

# Conclusions

Although the formula  $K_{1.75}Pt(CN)_4 \cdot 1.5H_2O$  appears to be nonstoichiometric, the unit cell is made up of tetrameric units of  $K_7[Pt(CN)_4]_4$ ·6H<sub>2</sub>O stoichiometry where the Pt has a formal oxidation state of +2.25. The distorted Pt chain has two crystallographically inequivalent but nearly equal Pt-Pt distances which suggests that the valence electrons on Pt are delocalized over the Pt chain. The Pt chain distortion is due to the asymmetric distribution of attractive forces exerted by the  $K^+$  ions on TCP(2). The H<sub>2</sub>O molecules form multiple hydrogen bonds which may contribute to conformation staggering of the TCP(1) and TCP(3) units along the Pt chain. Since the unit cell contains an uneven number of electrons, the possibility of a metallic state is suggested.

Acknowledgment. The authors wish to thank Dr. J. Williams for helpful discussions and for hydrogen atom placement possibilities from neutron Fourier maps and Dr. L. Fuchs for the use of his microscope.

**Registry No.** K<sub>1.75</sub>Pt(CN)<sub>4</sub>·1.5H<sub>2</sub>O, 59831-03-7.

Supplementary Material Available: Listing of scaled (×0.5) structure factor amplitudes (11 pages). Ordering information is given on any current masthead page.

### **References and Notes**

- (1) Work performed under the auspices of the U.S. Energy Research and Development Administration.
- Participant in the undergraduate research participation program sponsored by the Argonne Center for Educational Affairs. (2)
- Xerox Corporation, Webster, N.Y. 14580. I. F. Shchegolev, *Phys. Status Solidi A*, **12**, 9 (1972). (3)
- (4)
- (5) H. R. Zeller, Lestkoerperprobleme, 13, 31 (1973).

- K. Krogmann, Angew. Chem., Int. Ed. Engl., 8, 35 (1969).
   T. W. Thomas and A. E. Underhill, Chem. Soc. Rev., 1, 99 (1972).
   H. J. Deiseroth and H. Schulz, Phys. Rev. Lett., 33, 963 (1974).
   H. J. Deiseroth and H. Schulz, Mater. Res. Bull., 10, 225 (1975).
- (11) J. M. Williams, J. L. Petersen, H. M. Gerdes, and S. W. Peterson, Phys. Rev. Lett., 33, 1079 (1974).
- (12) J. M. Williams, M. Iwata, S. W. Peterson, K. A. Leslie, and H. J. Guggenheim, Phys. Rev. Lett., 34, 1653 (1975).
- (13) J. M. Williams, F. K. Ross, M. Iwata, J. L. Petersen, S. W. Peterson, S. C. Lin, and K. Keefer, Solid State Commun., 17, 45 (1975).
- (14) J. M. Williams, M. Iwata, F. K. Ross, J. L. Petersen, and S. W. Peterson, Mater. Res. Bull., 10, 411 (1975).
- (15) R. Comes, Lect. Notes Phys., 34, 32 (1975); R. Comes, M. Lambert, H. Launois, and H. R. Zeller, Phys. Rev. B, 8, 571 (1973); C. F. Eagen, S. A. Werner, and R. B. Saillant, ibid., 10, 2036 (1975); B. Renker, H. Rietschel, L. Pintschovius, W. Gläser, P. Bruesel, D. Kuse, and M. J. Rice, Phys. Rev. Lett., 30, 1144 (1973); B. Renker, L. Pintschovius, W. Gläser, H. Rietschel, R. Comes, and W. Drexel, ibid., 32, 836 (1974); B. Renker, L. Pintschovius, W. Glaser, H. Rietschel, and R. Comes, Lect.

- B. Renker, L. Pintschovius, W. Giaser, H. Ricischei, and R. Conres, Lec. Notes Phys., 34, 53 (1975).
  J. W. Lynn, M. Jizumi, G. Shirane, S. A. Werner, and R. B. Saillant, Phys. Rev. B, 10, 1154 (1975).
  L. A. Levy, J. Chem. Soc., 108 (1912).
  K. Krogmann and H. D. Hausen, Z. Naturforsch. B, 23, 1111 (1968).
  (a) T. W. Thomas, C.-H. Hsu, M. M. Lobes, P. S. Gomm, A. E. Underhill, and D. M. Watkins, J. Chem. Soc., Dalton Trans., 2050 (1972); (b) V. Hara, I. Shirotani, and A. Onodera. Solid State Commun., 17, 827 Y. Hara, I. Shirotani, and A. Onodera, Solid State Commun., 17, 827 (1975)
- (20) A. H. Reis, Jr., S. W. Peterson, D. M. Washecheck, and J. S. Miller, J. Am. Chem. Soc., 98, 234 (1976)
- (21) K. D. Keefer, D. M. Washecheck, N. P. Enright, and J. M. Williams, *J. Am. Chem. Soc.*, **98**, 233 (1976). (22) M. J. Minot, J. H. Perlstein, and T. J. Kistenmacher, *Solid State*
- Commun., **13**, 1319 (1973).
- (23) M. E. Druyan, A. H. Reis, Jr., E. Gebert, S. W. Peterson, G. W. Mason, and D. F. Peppard, in press.
- (24)"International Tables for X-ray Crystallography", Vol. IV, Kynoch Press, Birmingham, England, 1974, p 71.
- (25)Reference 24, p 148.
- (26)Reference 24, p 102.
- An IBM 370/195 program written by H. A. Levy. (27)
- (28) SSFOUR, S5XFLS, and S5FFE are Sigma 5 versions of the programs FOURIER by R. J. Dellaca and W. T. Robinson, ORXFLS3 written by W. R. Busing and H. A. Levy, and ORFFE written by W. R. Busing and H. A. Levy.
- "ORTEP" written by C. Johnson, Oak Ridge National Laboratory. D. M. Washecheck, S. W. Peterson, A. H. Reis, Jr., and J. M. Williams, (29)(30)Inorg. Chem., 15, 74 (1976).

Contribution from the Departments of Chemistry, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka, Japan 560, and Northwestern University, Evanston, Illinois 60201

# Crystal and Molecular Structure of Hydrido(dinitrogen)bis[phenyl(di-tert-butyl)phosphine]rhodium(I)

P. R. HOFFMAN, <sup>1a</sup> T. YOSHIDA, <sup>1b</sup> T. OKANO, <sup>1b</sup> S. OTSUKA, <sup>1b</sup> and JAMES A. IBERS\*<sup>1a</sup>

## Received March 22, 1976

AIC60204Y

The structure of hydrido(dinitrogen)bis[phenyl(di-tert-butyl)phosphine]rhodium(I),  $RhH(N_2)[P(C_6H_5)(C_4H_9)_2]_2$ , has been determined crystallographically. The complex possesses a typical four-coordinate planar geometry about Rh with a slight bending of the phosphine groups toward the hydrido ligand (P-Rh-P = 168.12 (3)°). A linear H-Rh-N-N arrangement is required by the crystallographically imposed twofold axis. The compound crystallizes in space group  $C_{2h}$  -  $C_{2/c}$ of the monoclinic system with four formula units in a cell of dimensions a = 22.187 (2) Å, b = 8.340 (1) Å, c = 15.979(2) Å, and  $\beta = 93.108$  (6)°. Important distances are Rh–P = 2.297 (1) Å, Rh–H = 1.66 (5) Å, Rh–N = 1.970 (4) Å, and N-N = 1.074 (7) Å. The structural data were refined by full-matrix least-squares methods to a conventional R index of 0.034 based on those 2760 reflections having  $F_0^2 > 3\sigma(F_0^2)$ .

### Introduction

Dinitrogen complexes of transition metals have held considerable interest since their discovery in 1965.<sup>2</sup> Several of these compounds, most notably those containing Mo or W, have been found to be intriguing starting materials for the conversion of molecular nitrogen to ammonia.<sup>3-8</sup> However, at this time somewhat rigorous conditions must be maintained for the laboratory reduction. Additionally, the nature of the involvement of transition metals in the nitrogen fixation process, i.e., oxidation state, mode of N<sub>2</sub> coordination, etc., still remains unclear.

Structurally dinitrogen has been found to bond to transition metals in three ways: terminally "end-on" (1), bridging

.N.

"end-on" (2), and bridging "side-on" (3).9,10 The N-N distance in the first two types (1.10-1.12 Å) is only slightly longer than that of free dinitrogen (1.0976 Å) with the exceptions of  $ReCl[P(CH_3)_2(C_6H_5)]_4-N_2-M_0Cl_4(OCH_3)^{11}$  and  $MoCl_4 \{N_2 ReCl[P(CH_3)_2(C_6H_5)]_4\}_2^{12}$  in which the N-N